7x^2-5=51

Simple and best practice solution for 7x^2-5=51 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7x^2-5=51 equation:



7x^2-5=51
We move all terms to the left:
7x^2-5-(51)=0
We add all the numbers together, and all the variables
7x^2-56=0
a = 7; b = 0; c = -56;
Δ = b2-4ac
Δ = 02-4·7·(-56)
Δ = 1568
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1568}=\sqrt{784*2}=\sqrt{784}*\sqrt{2}=28\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-28\sqrt{2}}{2*7}=\frac{0-28\sqrt{2}}{14} =-\frac{28\sqrt{2}}{14} =-2\sqrt{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+28\sqrt{2}}{2*7}=\frac{0+28\sqrt{2}}{14} =\frac{28\sqrt{2}}{14} =2\sqrt{2} $

See similar equations:

| -72=6(-3+8x)-3(-8+3x) | | y=21-12 | | 13p+85=2p+96 | | y=21-10 | | (2x–3)+(5x–6)=180 | | 19b+90=15b+98 | | y=21-8 | | (2y–3)+(5y–6)=180 | | 2(2x+4)=-18 | | y=21-6 | | 36=-(n-3)+3(n+7) | | 6a-4=4a+12 | | 5x+610x=31,1 | | 2s+8=4s-70 | | 5-t=0 | | 6(2y-4)=6(2y−4)= | | 6+x+2+40=90 | | x²–2x+12=2x(x+10) | | 7(x-4)+7(-x+8)=28 | | 5v+39=v+43 | | -2x-5(4x+1)=-13 | | (11-2x)+3=-5 | | 2x^2+7x-5280=0 | | 104=-2(7x-3) | | 3(2s-4)=4(s-9) | | 2v-65=v | | 4.25y=34 | | -14x-5=107 | | -7r-2(7r+6)=93 | | 2x/1.2-x=8 | | -7r-2(7r6)=93 | | 128=-4(4n-4) |

Equations solver categories